Supplementary Appendix

This appendix has been provided by the author to give readers additional information about his work.

Supplement to: DuPont HL. Acute infectious diarrhea in immunocompetent adults. N Engl J Med 2014;370:1532-40. DOI: 10.1056/NEJMra1301069

Table of Contents

Table S1	2
Infectivity of Enteric Pathogens Based on Infectious	
Inoculum in Healthy Adult Volunteers and Potential for	
Person-to-Person Spread	
Table S2 Summary of Key Controversies in Enteric Infections	4
Table S3	7
Priority Areas for Future Research in Enteric Infections	

Table S1. Infectivity of Enteric Pathogens Based on Infectious Inoculum in Healthy Adult Volunteers and Potential for Person-to-Person Spread

Enteric Pathogen	Infectious Dose for Humans	Communicability –
	Evidence of Infectivity	Frequency of
		Secondary Spread
Low Inoculur	Low Inoculum Organisms, <100 to 500 viable organisms	
Shigella sonnei, S. flexneri,	Based on volunteer challenge studies	Very Common
S. dystenteriae 1 (Shiga		
bacillus)		
Shiga toxin-producing E.	Epidemiologic and animal model studies	Common
coli including E. coli	suggest the dose is low	
O157:H7 strains		
Noroviruses	Based on volunteer challenge studies	Very Common
Rotaviruses	Based on volunteer challenge studies	Common
Giardia	Based on volunteer challenge studies	Common
Cryptosporidium	Based on volunteer challenge studies	Common
Moderate Dose 1,000 to 100,000 Viable Microorganisms		
Salmonella Enterica (non-	Unknown (foodborne outbreak studies	Not uncommon
typhoid strains)	suggest dose is highly variable and relates	
	to strain; most outbreaks are associated	
	with doses of > 1,000 viable bacteria,	
	some are < 1,000)	
Campylobacter jejuni	800-2 x 10 ⁹ viable bacteria	Rare

High Inoculum Organisms, >10 ⁶ Viable Microorganisms		
Enteroinvasive E. coli	Based on volunteer challenge studies	Rare
(EAEC)		
Enterotoxigenic E. coli	Based on volunteer challenge studies	Rare
(ETEC)		
Enteropathogenic E. coli	Based on volunteer challenge studies	Rare
(EPEC)		
Vibrio cholerae	Based on volunteer challenge studies	Rare

Table S2. Summary of Key Controversies in Enteric Infections

Controversy	Background		
	Diagnosis		
Inflammatory markers in stool to	Inflammatory pathogens involving the colon produce		
help diagnose colonic	inflammatory products that can be detected in stool		
enteropathogens	including leukocytes (WBCs), IL-8, lactoferrin or		
	calprotectin. When present a pathogen is more likely		
	identifiable and the finding may have prognostic		
	significance and help identify carriage of an organism with		
	disease due to another cause Their lack of sensitivity and		
	insufficient study make their value in the workup of acute		
	diarrhea uncertain		
Diagnosis of Clostridium difficile	Available tests lack sensitivity or specificity or they take too		
associated diarrhea (CDAD)	long to return; very sensitive assay may fail to discriminate		
	between asymptomatic infection and CDAD; the available		
	tests do not allow detection of more virulent strains of <i>C</i> .		
	difficile		
Chemotherapy and Prevention of Enteric Infection			
Antimotility drugs in the	The agents decrease number of stools without necessarily		
symptomatic treatment of acute	reducing fecal volumes, may result in worsening invasive		

diarrhea	bacterial diarrhea (with this risk reduced by providing
	concomitant effective antibiotics); they may potentiate
	hemolytic uremic syndrome in STEC infection; their major
	value is in international travelers who are on a tight
	schedule with fixed transportation times; value outside this
	setting for acute diarrhea is uncertain although they are safe
	if antimicrobial therapy is given concomitantly
Antibiotics for patients with	Antibiotics may prolong Salmonella fecal shedding ¹ and
diarrhea due to non-typhoid	fail to predictably shorten the illness, however, these strains
strains of Salmonella	may produce bacteremic disease requiring antimicrobial
	therapy
Antibiotics for patients with Shiga	Some antibiotics induce Shiga toxin-encoding phage and
toxin-producing Escherichia coli	may precipitate HUS
diarrhea	
Antibiotic treatment of travelers'	The illness is self-limiting and many cases are mild; it is
diarrhea	unclear when to start antibiotics, with passage of the first
	unformed stool or with full blown disease; there is a
	concern that widespread use of antibiotics, particularly with
	those with value outside the gut, will lead to clinical
	resistance
Prophylactic antibiotics to prevent	The illness is self-limiting and many cases are mild; there is
travelers' diarrhea	concern that travelers given preventive drugs may not
	exercise caution about food selection during high-risk travel

beca	use of false sense of safety; and the efficacy of
cher	noprophylaxis is not high in seasons or places with low
diar	rhea rate ²

Table S3. Priority Areas for Future Research in Enteric Infections

Research Question	Comments
	Diagnosis
Diagnostics for viral	Norovirus diagnostics are needed for routine laboratories
gastroenteritis pathogens	including assays for norviruses and viruses of potential
	interest include astrovirus, enteric adenovirus, sapovirus,
	bocavirus, polyomavirus, parechovirus, torovirus, and Aichi
	virus. In one study whole genome sequencing methods for
	detection of norovirus outbreaks was employed ³ which is not
	routinely used in outbreak investigation.
Diagnostics to define the	New methods are needed to look for established and new
etiology of currently non-	pathogens in patients with diarrhea including with or without
diagnosable cases of acute and	enrichment: molecular detection and typing methods
persistent diarrhea	including deep 16S rRNA mass metagenomic sequencing for
	novel microbial sequences; DNA microarray technology with
	various amplification strategies; conventional and real-time
	reverse transcription-PCR, luminex xMAP technology and
	flow cytometry methods; probe-independent RNA sequencing
	approaches identifying pathogen transcriptomics and
	applications of immunoelectron microscopy
Diagnostic biomarkers in	Cytokine profiles working with fecal samples and sera and
understanding pathogenic	quantitation of lactoferrin or calprotectin to develop indicators

mechanisms to help with	of diagnosis and prognosis ⁴
diagnosis and to identify	
therapeutic targets	
F	Predisposing Host Factors
Host genetics in enteric	Defining host genetic factors in enteric infection may help our
infection	understanding of susceptibility and provide opportunities for
	therapy and disease prevention
Proton pump inhibitor therapy	Whether acid-reducing drugs importantly predispose to
in the pathogenesis of diarrhea	enteric infection ⁵ and how health benefits of the drugs can be
	separated from disease potentiation effects should be studied
Post-infectious complications of	Host factors and pathogenesis needs to be studied to define
enteric disease	the population at risk and to develop therapeutic and
	prevention strategies with an emphasis on functional bowel
	disorders which are so common
Micr	obial Studies of Pathogenesis
Diarrheagenic E. coli with inter-	More research is needed on the biology of various <i>E. coli</i>
pathogen enhancement of	enteric pathogens; the serious outbreak of dysentery and HUS
virulence	due to E. coli O104:H4 in Germany and France in 2011 due to
	an enteroaggregative E. coli strain that had acquired Shiga
	toxin 2-producing phage serves as a warning that we are
	likely to see super-pathogens containing multiple
	diarrheagenic E. coli virulence factors with additive or

	synergistic virulence ⁶
Noroviruses and other viruses	Diarrhea is common in this setting with enteric infection and
and C. difficile as causes of	GVHD both being possible; noroviruses have been shown to
morbidity and mortality in	cause persistent shedding and diarrhea in these patients
immunocompromised solid	complicating their therapy and outcome ⁷
organ and hematopoietic stem	
cell transplant patients	
Non-typhoid salmonella	Studies of antibacterial resistance and virulence factors of
bacteremia	salmonella strains and host resistance factors should be
	carried out to explain the excess bloodstream infections seen
	in sub-Saharan Africa and in many people worldwide ⁸
Changing virulence of <i>C</i> .	Strain and clade variation of strains and host biomarkers need
difficile	to be studied to understand why the organisms is associated
	with increasing frequency and severity of infection ⁹
Therapeutic Considerations	
Optimal treatment of CDAD	Current therapy with high rates of reoccurrence probably need
and CDAD recurrence	longer term therapy initially and in patients with multiple
	reoccurrences methods need to be studied to re-populate the
	colon with homeostatic bacterial flora to resist infection
Non-antimicrobial drugs	Studies of mechanisms of acute diarrhea are needed to look
targeting disease	for optimal physiologically-directed therapeutic agents
pathophysiology	including antisecretory, antimotility and anti-inflammatory
	drugs; the gut chloride channel blocking antisecretory drug,

I diarrhea in HIV infection and the antisecretory sephalinase inhibitor, racecadotril is being developed for atment of secretory diarrhea	
atment of secretory diarrhea	
·	
ithromycin and rifaximin appear not to induce Shiga toxin-	
coding phage and may have some value in disease	
atment. Clinical trials in patients with STEC-associated	
US are needed to confirm value of plasma exchange, and	
rapy with anti-complement humanized monoclonal	
ibody, eculizumab ¹⁰	
testinal Microbiota	
e study of intestinal flora and human disease needs much	
ater study focusing on human disease from diarrhea to	
conic intestinal disorders to GI cancers; available probiotics	
ve limited value on improving health and research in this	
a is needed; improved evidence-based selection of	
nerobic gram-positive and anaerobic gram-negative bacteria	
t promote intestinal health and homeostasis is needed;	
rent probiotics do not have important value in promoting	
estinal health	
Chemoprophylaxis and Immunoprophylaxis	
ccine candidates directed toward the organism or toxins A	

CDAD recurrences	and B are in development stages; this is a priority for
	controlling the infection that is showing increasing
	importance, anti-toxin A and B monoclonal antibodies are in
	trials aimed at prevention of CDAD recurrences
Vaccines for selected forms of	Priority enteric pathogens for vaccine development: rotavirus
infectious diarrhea	(for developing countries), norovirus (genogroup I and II,
	especially GII.4), cholera, ETEC, shigella and campylobacter
Mechanisms of efficacy of fecal	FMT has had success in the treatment of recurrent CDAD and
microbial transplantation (FMT)	anecdotal therapy of IBD and IBS appear promising; the
and the development of refined	components of successful FMT and routes of administration
approaches to improve	need to be studied focusing on bacteria and other constituents
microflora	in stool such as organic acids and intestinal alkaline
	phosphatase

ETEC = enterotoxigenic *E. coli*; CDAD = *Clostridium* difficile-associated diarrhea; HUS = hemolytic uremic syndrome; IBD = inflammatory bowel disease; IBS = irritable bowel syndrome; STEC = Shiga toxin producing E. coli

References

- 1. Neill MA, Opal SM, Heelan J, et al. Failure of ciprofloxacin to eradicate convalescent fecal excretion after acute salmonellosis: experience during an outbreak in health care workers. Ann Intern Med 1991;114:195-9.
- 2. Flores J, Dupont HL, Jiang ZD, et al. A randomized, double-blind, pilot study of rifaximin 550 mg versus placebo in the prevention of travelers' diarrhea in Mexico during the dry season. J Travel Med 2011;18:333-6.
- 3. Kundu S, Lockwood J, Depledge DP, et al. Next-generation whole genome sequencing identifies the direction of norovirus transmission in linked patients. Clin Infect Dis 2013;57:407-14.
- 4. Weh J, Antoni C, Weiss C, Findeisen P, Ebert M, Bocker U. Discriminatory potential of C-reactive protein, cytokines, and fecal markers in infectious gastroenteritis in adults. Diagn Microbiol Infect Dis 2013.
- 5. Bavishi C, DuPont HL. Systematic review: the use of proton pump inhibitors and increased susceptibility to enteric infection. Alimentary pharmacology & therapeutics 2011;34:1269-81.
- 6. Guy L, Jernberg C, Arven Norling J, et al. Adaptive mutations and replacements of virulence traits in the Escherichia coli O104:H4 outbreak population. PLoS One 2013;8:e63027.
- 7. Robles JD, Cheuk DK, Ha SY, Chiang AK, Chan GC. Norovirus infection in pediatric hematopoietic stem cell transplantation recipients: incidence, risk factors, and outcome. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 2012;18:1883-9.
- 8. Tabu C, Breiman RF, Ochieng B, et al. Differing burden and epidemiology of non-Typhi Salmonella bacteremia in rural and urban Kenya, 2006-2009. PLoS One 2012;7:e31237.
- 9. Walker AS, Eyre DW, Wyllie DH, et al. Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis 2013;56:1589-600.
- 10. Menne J, Nitschke M, Stingele R, et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ 2012;345:e4565.